清北博雅教育集团
信息详情
德克萨斯大学达拉斯分校伍伟莉教授学术报告
MBA
信息发布
2023-12-31

德克萨斯大学达拉斯分校伍伟莉教授学术报告

随着考研进入下半年,不少院校都发布了24级提前面试通知及招生政策,今天小编为大家整理了招生信息,备考的小伙伴们一定要收好了!赶紧跟随小编一起来看看吧!

报告题目:The Art of Big Data: Accomplishments and Research Needs

报告人:伍伟莉教授

报告时间:2023年11月4日 10:50

报告地点:卓越楼810

报告摘要Online social platforms have become more and more popular, and the dissemination of information on social networks has attracted wide attention of the industries and academia. Aiming at selecting a small subset of nodes with maximum influence on networks, the Influence Maximization (IM) problem has been extensively studied. Since it is #P-hard to compute the influence spread given a seed set, the state-of-art methods, including heuristic and approximation algorithms, faced with great difficulties such as theoretical guarantee, time efficiency, generalization, etc. This makes it unable to adapt to large-scale networks and more complex applications. With the latest achievements of Deep Reinforcement Learning (DRL) in artificial intelligence and other fields, a lot of works has focused on exploiting DRL to solve the combinatorial optimization problems. Inspired by this, we propose a novel end-to-end DRL framework, ToupleGDD, to address the IM problem which incorporates three coupled graph neural networks for network embedding and double deep Q-networks for parameters learning. Previous efforts to solve the IM problem with DRL trained their models on the subgraph of the whole network, and then tested their performance on the whole graph, which makes the performance of their models unstable among different networks. However, our model is trained on several small randomly generated graphs and tested on completely different networks,  and can obtain results that are very close to the state-of-the-art methods. In addition, our model is trained with a small budget, and it can perform well under various large budgets in the test, showing strong generalization ability. Finally, we conduct extensive experiments on synthetic and realistic datasets, and the experimental results prove the effectiveness and superiority of our model.

 

报告人简介:Dr. Weili (Lily) Wu received her MS and PhD degrees in computer science both from University of Minnesota, in 1998 and 2002 respectively. She is currently a full professor and a lab director of the Data Communication and Data Management (DCDM) Laboratory at the Department of Computer Science and Engineering, the University of Texas at Dallas. Her research interest is mainly in Big Data, Social Network, Blockchain Technology, wireless sensor network, IoT, Data Mining.  She has published more than 230 journal papers and 102 conference papers in various prestigious journals and conferences such as IEEE/ACM Transactions on Networking, IEEE Trans. Netw. Sci. Eng., Comput. Social Systems, IoT Journal, ACM Transactions on Knowledge Discovery in Data, IEEE Trans. Reliability, IEEE TKDE, Multimedia, ACM Transaction on Sensor Networks (TOSN), IEEE Trans. Netw. Serv. Manag., Wirel. Commun., Mob. Comput., Parallel Distrib. Syst., IEEE ICDCS, INFOCOM, ACM SIGKDD, etc. I’m an associate editor of IJBRA, Computational Social Networks (CSN), SOP Transactions on Wireless Communications (STOWC), DMAA, Journal of Combinatorial Optimization (JOCO), and Journal of Global Optimization (JOGO). 

以上就是清北博雅老师为大家整理的目前为止已经公布的MBA若有任何错误和遗漏,请以学校发布的官方招生简章为准。同时,有任何备考上的问题都可以找清北博雅的招生老师咨询,以下是清北博雅老师们的联系方式,欢迎广大备考学子前来咨询

张老师:18390880776(同微信)

吴老师:19972126683(同微信)

“(本文转载网站 ,如有侵权请电话联系)* 文章为作者独立观点,不代表清北博雅立场。对文有任何疑问可联系清北博雅招生老师,欢迎交流与合作。